About Us
Policy
News
Shop
Scotland
Wales
Sign up to our Newsletters
Contact Us
Research
Search
Home
Research
Species
Habitats
Long-Term Monitoring
Demonstration Projects
Our Research in Practice
Annual Reviews
Scientific Publications
Plain English Summaries
What the Science Says
Game
Get The Knowledge
GWCT Accredited Game Shot
GWCT Shoot Operator’s Test
GWCT Shoot Biodiversity Tool
2023 Breeding Woodcock Survey
Research
Advice
Policy
News
Courses & Training Days
Black Grouse Appeal
Grey Partridge Appeal
Gamebird Releasing Appeal
Trail Camera Appeal
British Woodcock Appeal
Game and Conservation Benchmarking Survey
Shoot Managers' Newsletter
Wildlife
Research
Advice
News
Courses & Training Days
Working for Wildlife
Species of the Month
Managing for More
Action for Curlew
Curlew Badge
Waders For Real
Fox Diet Research Appeal
Wildlife Appeals
Farming
Farming Blog
Big Farmland Bird Count
Research
Advice
The Allerton Project
Auchnerran: Scottish Demonstration Farm
Farmer Clusters
Policy
News
Courses & Training Days
GWCT Farming Newsletter
Fish
SAMARCH Project
The Missing Salmon Alliance
Research
Advice
Policy
News
Courses & Training Days
Save Our Salmon Appeal
Salmon Badge
Volunteer
Fisheries Blog
Advice
Advice Blog
GWCT Shoot Biodiversity Tool
Meet our advisors
Face to Face Advice
GWCT Advisory Scotland
'How to' Advice
Avian influenza Q & A
Conserving Our Woodcock
Lead Ammunition
Guides and Factsheets
Courses and Training Days
General Licences
Educational Materials
Shoot Benchmarking
FAQs
Game & Wildlife Glossary
Blogs
GWCT News Blog
Farming Blog
Allerton Project Research Blog
Auchnerran Blog
Big Farmland Bird Count Blog
Farmland Ecology Blog
Fisheries Blog
Loddington Estate Blog
Peter Thompson's Wildlife Blog
Rotherfield Demonstration Project Blog
Waders For Real Blog
Woodcock Watch Blog
Uplands Blog
Events
Calendar
Courses and Training Days
Scottish Game Fair
'The Last Keeper' Screenings
Join
Choose your Membership
Renew or Update Details
GWCT Insurance
Why join the GWCT?
How your membership helps
Testimonials
Sign up to our Newsletters
GWCT Morning Briefing Email
Join Offline
Donate
General Donation
Current Appeals
GWCT Raffles
Gun Draw
Grand Grouse Draw
Shoot Sweepstake
GWCT Shop
GWCT Art Gallery
The Allerton Project
In Memoriam Donations
Leaving a Legacy
Fundraising for the GWCT
Charitable Trusts and Foundations
Become a Sponsor
Research
Species
Habitats
Long-Term Monitoring
Demonstration Projects
Our Research in Practice
Annual Reviews
Scientific Publications
2024
2023
2022
2021
2020
2010-19
2000-09
2009
2008
2007
2006
2005
HOLLAND2005A
2004
2003
2002
2001
2000
1990-99
1980-89
1970-79
1960-69
1950-59
1940-49
1929-39
Plain English Summaries
What the Science Says
Home
>
Research
>
Scientific Publications
>
2000-09
>
2005
>
HOLLAND2005A
Farm-scale spatiotemporal dynamics of predatory beetles in arable crops.
Author
Holland, J.M., Thomas, C.F.G., Birkett, T.C., Southway, S.E., & Oaten, H.
Citation
Holland, J.M., Thomas, C.F.G., Birkett, T.C., Southway, S.E., & Oaten, H. (2005). Farm-scale spatiotemporal dynamics of predatory beetles in arable crops. Journal of Applied Ecology, 42: 1140-1152.
Abstract
The spatial dynamics of farmland invertebrates can provide essential information relevant to their management for pest control and biodiversity conservation in sustainable agriculture. Carabid beetles are one of the most important groups contributing to biological control in arable fields. Previous studies have focused on spatial dynamics within single fields and years. In this study we examined their larger scale, long-term dynamics, thereby taking into account the impact of changes in crop rotation and the influence of field size.
The spatial distributions of four beetle species were investigated at an unprecedented spatial scale in a grid of 973 pitfall trap locations across six fields encompassing 64 ha of arable land. Week-long trapping was conducted four times in the first year and twice in the two following years.
All species showed strong aggregation but the size and location of patches differed among species. The distribution of
Pterostichus melanarius
was stable within and between years, with a single large patch close to the field boundaries. Patches of
Poecilus cupreus
were also located close to field boundaries but their location changed between years.
Pterostichus madidus
and
Philonthus cognatus
distributions extended across field boundaries and were less stable, with patch locations changing between years.
Synthesis and applications
. The spatial extent of a population patch for a given species was species-specific. Species overwintering in field boundaries remained in proximity to these throughout the summer, whereas patches of mid-field overwintering species were more extensive. Patches were generally stable within years but varied for some species between years. Species therefore differ in their response to crop management practices and consequently blanket management approaches for these important generalist predators of crop pests are inappropriate. For spatially stable species (e.g.
Pterostichus melanarius
) it may be possible to determine their specific habitat requirements and to devise predictive and protective measures to preserve populations or manipulate them at the farm-scale. More mobile species may be better at responding to pest aggregations at the farm-scale. However, operations that deplete populations, e.g. soil cultivations, should be spatially and temporally desynchronized at the farm-scale to conserve populations and enable functional biocontrol.
Link
http://www.jstor.org/stable/3505865
About Us
Contact Us
Feedback
Terms & Conditions
Privacy Policy
Events
Twitter
Facebook
Web Design by Mentor Digital